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Many engineering and scientific applications require the computation of eigenvalues (and
eigenvectors) of very large symmetric or Hermitian matrices. We describe a Lanczos
procedure which allows us to compute either few or many eigenvalues of such matrices in any
intervals specified by the user. This procedure can even be used to compute all of the eigen-
values. The desired eigenvalues are computed as eigenvalues of an associated symmetric
tridiagonal matrix 7,, whose order depends upon the distribution of the eigenvalues in the
given matrix 4 and upon which portions of the spectrum of A4 are desired. The storage
requirements depend linearly upon the order of A4, if the the storage required to generate the
products Ax is also linear in the order. The amount of computation: required depends directly
upon the distribution of the - desired eigenvalues and upon the cost of computing Ax.
Numerical results for a very large matrix of order 4900 demonstrate that this procedure can
be used on very large matrices.

1. INTRODUCTION

Many engineering and scientific applications require the computation of eigen-
values of very large symmetric or Hermitian matrices. We describe a Lanczos
procedure for computing either few or many such eigenvalues in any intervals
specified by the user. Numerical results obtained on a very large matrix of order
i = 4900 demonstrate the effectiveness of this procedure.

Standard algorithms for eigenvalue computations, such as those found in the
EISPACK [1] subroutine library, are not suitable for large matrices {order » > 200).
These procedures explicitly modify the given matrix 4, and therefore have computer
storage requirements that depend upon the square of the order of the given matrix
(i.e., are O(n*)) and arithmetic operation counts that depend upon the cube of the
order (i.e., are O(n')). Alternative procedures based upon computing products of the
form Ax have been developed for computing a few extremal eigenvalues {and eigen-
vectors) of large symmetric matrices. See, for example, papers by Paige [2-4/,
Stewart {5], Rutishauser [6], Golub [7], Jennings {8], Shavitt et al. [9], Butscher and
Kammer [10], Cullum and Donath [11], Golub and Underwood [12], and Parlett
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and Scott [13]. Much of this research uses some form of Lanczos tridiagonalization
Lanczos [14] which we will also use and which we describe below. Lanczos
tridiagonalization has in fact also been applied to the problem of finding many
extremal eigenvalues (see van Kats and van der Vorst [15-16]), to the problem of
computing some interior eigenvalues (see Lewis [17]), and even to the problem of
computing all of the eigenvalues (see Edwards et al. [18]) of very large symmetric
matrices. In the discussion we will comment on the relationships between our
proposed algorithm and the algorithms given in [16] and [18].

In our algorithm, as in most of the above references, the desired eigenvalues of a
symmetric n X n matrix A are computed as eigenvalues of an associated m X m
symmetric tridiagonal matrix T,,. The order m required is a function of the denseness
or gaps between the desired eigenvalues of 4 and the relationship of these gaps to the
overall gap structure of the other eigenvalues of 4. If the storage requirements for
generating Ax are linear in # (i.e., O(n)), then the overall storage requirements of our
procedure are also linear in n. Moreover, if the products Ax can be generated in O(n)
arithmetic operations, then the overall cost of the arithmetic operations may be only
O(kn), where k is the number of distinct eigenvalues desired. Associated computer
programs are contained in [19]. Associated eigenvector computations are discussed
in [20].

In Section 2 we describe Lanczos tridiagonalization and define what we call the
Lanczos Phenomenon. In Section 3 we use this phenomenon together with a
demonstrated correspondence between Lanczos tridiagonalization and conjugate
gradient optimization to provide a plausibility argument for the Lanczos eigenvalue
algorithm that we propose. In Section 4 we define our Lanczos eigenvalue procedure.

In Sections §, 6, and 7 we discuss different portions of this algorithm. In Section 5
we give the cost of computing the associated tridiagonal matrices and give two
examples to illustrate the dependence of the required size of the tridiagonal matrices
upon the gap structure in the original matrix. In Section 6 we briefly discuss the
eigenvalue subroutines used to compute the eigenvalues of the tridiagonal matrices
generated, and the implementation of the identification test that selects the relevant
subset of the eigenvalues of the tridiagonal matrix used. In Section 7 two methods for
computing error estimates are given. These estimates are used to determine
convergence and also to estimate at any given stage how much more work would be
required to compute the desired eigenvalues.

In Section 8 we present the results of several experiments. Test matrices of order
n=1600 and n=4900 are considered. The results clearly demonstrate that the
proposed Lanczos tridiagonalization procedure with no reorthogonalization is a
powerful procedure for computing any of the eigenvalues of very large symmetric
matrices.

We restrict the discussion to symmetric matrices. We will, however, indicate in
Section 9 how the algorithm can be applied to Hermitian matrices.
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2. LANCZOS TRIDIAGONALIZATION

Lanczos tridiagonalization is a general procedure for replacing a given symmaetric
n X n matrix 4 by a symmetric m X m tridiagonal matrix 77,. The tridiagonalization
proceeds as follows. Choose a random starting n-vector v,. Vectors {vy, v3,.., Uy}
spanning the space spanned by the vectors {v,,4v,... 4™ *v,} are then generated
using the Lanczos recursion for i=1, 2,...,m

Biyiviy =Av;— v, = Biv g, (H)

where
a,=v](Av,— Bv;_,) and |B; 1l =|Av;— a0, — Bv;_,|| (2)

with v, =0 and f§,; = 0. In exact arithmetic, this recursion successively generates an
orthonormal set of vectors from the Krylov vectors 4%v,, k= 1,.., m — 1. The a,v,
and the f,v;_, are, respectively, the projection of Ay, onfo v; and v,_,.

Observe that the matrix A enters Egs. (1) and (2) only through the 4o, term. Also
observe that at each iteration only the two most recent Lanczos vectors are required,
Only four vectors of computer storage are required by this recursion, two vectors of
length n and two of length m, plus whatever is required to generate the matrix-vector
products'4v,. The original version given by Lanczos used different but theoretically
equivalent versions of the formulas for the o, and §,. Paige [3-4, 21] has shown that
Eqs. (2) are the most reliable formulas.

We can rewrite Eq. (1) in matrix form as

AVm:Vme+ﬁm+lvm+le:v (3)

where the associated symmetric tridiagonal matrices T, have diagonal entries
T,(i, i)=a; and the principal subdiagonal and superdiagonal entries T, (i, i+ 1)=
T,(i+1,i) =8, ,. All other entries of T, are 0. In Eq. (3), e}, = (0,..., 0, 1) denotes
the mth coordinate vector. If we assume that 4 has n distinct eigenvalues and that the
starting vector v, has a nonzero projection on each eigenvector of 4, then in exact
arithmetic the Lanczos vectors generated are orthonormal for any m < n. In fact,
T,=V5LAV, is a matrix representation of 4 on the subspace spanned by the
Lanczos vectors V,,. In practice, however, this orthogonality is lost very quickly, and
we do not have this precise relationship between T, and 4.

Lanczos made two proposals with respect to Egs. (1) and (2). First he proposed
(see Lanczos [22]) the replacement of any general symmetric system of equations
Ax=>b by the much simpler tridiagonal system of equations T,y= Vb, with
x =1V, obtained from Eq. (3). This transformation is valid, however, only if the V/,
are truly orthonormal, and a straightforward application. of this proposal yields
incorrect answers. Thus, this proposal was rejected initially because of this numerical
instability. We note in passing that more recent 'work has shown that an iterative
version of Lanczos’ proposal can work very well; see Paige and Saunders {23] for
details.
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Lanczos also proposed [14] that the tridiagonalization be used to compute approx-
imations to the eigenvalues of 4. This proposal was not totally rejected but accepted
only with the additional premise that the global orthogonality of the Lanczos vectors
must be maintained, otherwise the numbers generated would have no validity.
Therefore, subsequent algorithms proposed incorporated this premise by continuously
reorthogonalizing the Lanczos vectors as they were generated. For each value of i in
Eq. (1), the new Lanczos vector was reorthogonalized with respect to all previously
generated Lanczos vectors; see, for example, Golub [7], Newman and Pipano {24],
Paige [25], and Golub and Underwood [12]. Paige [2-4], however, demonstrated
that (i) good approximations to extreme eigenvalues of 4 could be obtained even if
no reorthogonalization was performed; and (ii) the losses of orthogonality in the
Lanczos vectors were caused primarily by the convergence of eigenvalues of T, to
eigenvalues of 4 and not simply by cancellation errors as was previously thought.
Paige also demonstrated that although global orthogonality was lost a localized near-
orthogonality of the Lanczos vectors persisted as long as the off-diagonal entries §;, ;
of T, were not too small. This localized orthogonality plays a key role in our
arguments that the procedure we propose is valid. Note that the extreme eigenvalues
of a matrix are those eigenvalues on the ends of the spectrum, the algebraically
largest or the algebraically smallest eigenvalues.

The observation in [2] of the losses in orthogonality of the Lanczos vectors with
respect to the converged eigenvectors led to Lanczos algorithms that incorporated
reorthogonalization with respect to converged eigenvectors of A4 rather than with
respect to other Lanczos vectors; see [11, 13]. (Actually the algorithm in [11] was
developed without the benefit of the results in [2]. The argument used in [11] to
justify limiting the reorthogonalization to reorthogonalization with respect to the
converged eigenvectors, rather than with respect to all of the Lanczos vectors, was
simply one that compensated for the errors introduced into the Lanczos recursion
when certain of the Lanczos vectors being generated were not allowed to generate
descendants because of the observed -eigenvector convergence.) This change
significantly reduces the amount of computer storage and computation required.
These algorithms work well for computing a few extreme eigenvalues and
corresponding eigenvectors. However, since they require that at each iteration in the
algorithm that all of the converged eigenvectors be kept on easily accessible storage,
it is difficult to use the ideas in [11] or [13] to compute either large numbers of
extreme eigenvalues or to compute interior eigenvalues of 4.

It was therefore natural to attempt to use the Lanczos tridiagonalization directly
with no reorthogonalization not just to get a few extreme eigenvalues as recom-
mended by Paige [2], but in fact to get many, even all of the eigenvalues of 4. The
Lanczos procedures in [16] and in [18] do not use any reorthogonalization and
neither does the procedure described in this paper. The storage requirements for these
procedures are minimal. Each of these procedures rests upon an empirical obser-
vation which we call the Lanczos Phenomenon.

THE LANCZOS PHENOMENON. For large enough m, every distinct eigenvalue of A
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with an eigenvector that has a non-negligible projection on the starting vector v, is
an eigenvalue of T,,.

Note that “large enough m” may be m < 3n, where 4 is n X . In Section 5 we give
an example where m = n is large enough, and also an example where m = 10n is
required. The size required depends upon the distribution of the eigenvalues of 4. In
[26~27] we exhibited a mechanism for explaining this phenomenon. We related
Lanczos tridiagonalization to the conjugate gradient optimization procedure for
solving & system of linear equations 4Ax =wv, with starting iterate x,=0. This
relationship was then used to obtain a plausibility argument for the empirically
observed Lanczos Phenomenon and for “convergence” of our proposed eigenvalue
algorithm.

When the conjugate gradient optimization algorithm is applied to solving Ax =v,,
it generates a sequence of iterates x,, [=1,2,. that successively minimize the
associated error function f(x) = (x — x*)” A(x —x*) along A-orthogonal directions
of change. in the parameters x, where x* denotes the solution of Ax=v,. The
Lanczos vectors generated using Egs. (1) and (2) with the starting vector v, can be
identified with properly chosen multiples of the associated residual vectors,
¥,=—Ax; + v, in the corresponding conjugate gradient optimization applied to the
system Ax = v,, where x, = 0. No attempts will be made to explain this relationship
in any detail. Please refer to [27] for details. Using this relationship, together with the
local near-orthogonality of the Lanczos vectors, and the fact that the conjugate
gradient optimization procedure for Ax = v, can be shown to convergé under fairly
weak conditions, such as local A-orthogonality of the directions of movement in the
optimization procedure, we can argue that the following relationship holds. The
arguments used in [27] were not totally rigorous, however, computational
experiments indicate that this relationship is valid.

ASSERTION [27]. Assume A is a positive definite matrix. Let A; be the distinct
eigenvalues of A and z; be corresponding orthonormal eigenvectors of A, jor
j=1..,q. If each of these eigenvectors has a nonzero projection on the starting
vector vy, then for large m each A; is a near-zero of an appropriately scaled charac-
teristic polynomial of T,,,.

(It should be noted here that the arguments in [26-27] regarding the conjugate
gradient-Lanczos recursion equivalence require that the matrix 4 be positive definite.
However, the definiteness or indefiniteness of a given matrix does not affect the
performance of the Lanczos recursion. For a given matrix 4, at least theoretically,
the Lanczos recursion generates the same set of Lanczos vectors for any of the
matrices A + of for any shift ¢. Thus, if the given matrix 4 is not positive definite, we
can think of applying the conjugate gradient~I.anczos arguments to the matrix 4 + oJ
for some ¢ such that the resulting matrix is positive definite. In actual computations,
however, one would use the original matrix 4. There is no reason to introduce shifts.)

Thus, arguments using the Lanczos tridiagonalization—conjugate gradient
optimization relationship lead to a plausible mechanism for the Lanczos
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phenomenon. Once we believe that for large enough m all of the desired eigenvalues
are represented among the eigenvalues of 7', then we can ask the question whether
or not we can use this phenonomenon as the basis for an algorithm to compute these
eigenvalues. If we can, then we will have replaced a general unstructured symmetric
eigenvalue problem by a highly structured, in fact, symmetric tridiagonal one.
Depending upon what eigenvalues are desired, the order of the tridiagonal matrix
may be smaller or larger than the original matrix 4. Even if the order of 7, is much
larger than that of 4, the gains in the storage and computational requirements from
using T, instead of 4 are typically enormous. Eigenvalue subroutines for tridiagonal
matrices require very little storage, linear in the order of the tridiagonal matrix, and
the operation count for finding even all the eigenvalues of a tridiagonal matrix is only
quadratic in the order of the tridiagonal matrix.

The key to successfully applying the Lanczos Phenomenon is the ability to
recognize and eliminate the extra eigenvalues that appear because of the losses in
orthogonality of the Lanczos vectors. For an example of such eigenvalues see Table L
A secondary problem is that the multiplicities of the eigenvalues in T,, do not
accurately reflect the multiplicities of the eigenvalues of 4. Numerically multiple
eigenvalues are, however, converged approximations to eigenvalues of 4 so the false
multiplicities present a problem only if the user wants not only the eigenvalues but
also their multiplicities. The real problem is identifying which eigenvalues are not
relevant. We choose to call such eigenvalues “spurious.” From Webster [28] we have
the following definition.

DEeFINITION 1. Spurious = Outwardly similar or corresponding to something
without having its genuine qualities.

In Section 3 we will give another definition which in fact provides a means for
identifying such eigenvalues computationally. Before proceeding to describe the
algorithm that we propose, we have to introduce some terminology. We will then give
arguments, again using the Lanczos tridiagonalization—conjugate gradient
optimization relationships, to justify this procedure. First consider the following ter-
minology.

For a given value of m, we use T , to denote the symmetric tridiagonal matrix of
order m — 1 obtained from T, by deleting the first row and column. That is,

7»,2(1,’ D=0a;, and fz(i, i+1)=p,. 4)

To be more precise we should use T, ,, in Eq. (4), but then the notation becomes
unwieldy. The eigenvalues of T, will be denoted by u; < .-+ <u, and the distinct
eigenvalues of A will be denoted by A, < -+ <4,, where g n. The characteristic
polynomial of T,,, that is, the determinant of (T',, — uI), will be denoted by a,,(u) and
its derivative will be denoted by a,,(«). Similarly, the characteristic polynomial of T,
will be denoted by d,(u).
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3. PLAUSABILITY ARGUMENT FOR AN ALGORITHM

For the tridiagonal matrix 7', we have the following equality {26]. This equality is
valid for any symmetric tridiagonal matrix and is not connected with the Lanczos
tridiagonalization. If 4 is an eigenvalue of T,,, that is, a,, (i) = det(T,, — uf} = C, then

) a0~ |1 £ ©

Using the Lanczos tridiagonalization—conjugate gradient optimization relationships
developed in {27}, if a,,_, = det(T,,_,) 0, we get from Eq. (5) that

{aAZ(Ju)/amA—l][am—l(ﬂ)/am—l} :przn (6)

where p,, is the norm of the associated residual —Ax, + v, in the associated
conjugate gradient procedure. (It should be noted here as it was above that the
arguments in [26-27] regarding the conjugate gradient-Lanczos recursion
equivalence require that the matrix 4 be positive definite. However, the concliusions
that one can obtain using this relationship apply to any symmetric matrix, not just to
positive definite 4.) In [27] we demonstrated that these associated residuals can be
expected to converge as m — oo. If this convergence occurs, then Eq. (6) suggests'that
for large m, any eigenvalue of T,, is either close to an eigenvalue of T, or close to an
eigenvalue of T,,_,. Numerical experiments demonstrated that the T, matrix could be
used to identify the extra eigenvalues that appear as eigenvalues of T, due to the
losses in orthogonality of the Lanczos vectors. In particular, any simple eigenvalue of
T, that is pathologically close to an eigenvalue of 7, is one of the extra sigenvalues
and should be discarded. We have the following definition and identification test for
these extra eigenvalues.

DerFINITION 2. Anv simple eigenvalue of 7. t i ologicallv close to an

1 1€ remarning eigenvalues ol 1 ,, are approxumating eigenvaiues Of A, In particuiar,
as we said earlier, any numerically multiple eigenvalues of 7, are good epprox-
imations to eigenvalues of 4. Heuristic arguments were given in {27} to explain these
numerical observations. We repeat some of those arguments here. From the Lanczos
recursion and a theorem in [21], we have the following theorem,

THeEOREM 1. Let 4 be a symmetric matrix and T, be a corresponding tridiagonal
matrix generated using the Lanczos recursions. Given any eigenvalue u of T, and
corresponding unit eigenvector x with Tx = ux, there is an eigenvalue A of A such that

A —ulliVxlI<|dVx —uVxl=¢, + F,, (7

where €, = |B,,, 1 x(m)|, F,, = O(em || 4 |)), & = “machine epsilon,” and x(m) is the mih
component of the eigenvector x.
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If we use the determinant formulas for eigenvectors of any symmetric tridiagonal
matrix together with the Lanczos tridiagonalization—conjugate gradient optimization
correspondence, we get the following equality

m+1

ﬂ Bl lan@) @)1 = P i/ @)/ an) @) @n)] . (®)

Thus, an upper bound on the error in u being an eigenvalue of A is given by the
ratio of the associated conjugate gradient residual p,,, =|—A4x,.,+v,]| to the
square root of the product of the derivative of the characteristic polynomial of T, at
u and the characteristic polynomial of T, evaluated at x. The a/,(¢) term in Eq. (8) is
a measure of how isolated u is as an eigenvalue of T,. The arguments in [26] tell us
that we only need consider the isolated eigenvalues of T, because numerically
multiple eigenvalues of T, are accurate approximations to eigenvalues of 4. For
isolated eigenvalues the significant factor in Eq. (8) is 4,(¢). In particular, when g is
an eigenvalue of T, the bound in Eq. (8) is relatively large. Of course this is only an
upper bound on the error. However, general numerical experience indicates that the
bound in Eq. (7) is a realistic, if somewhat conservative, bound on the true error.
Furthermore, since the term in Eq. (8) equals the term in Eq. (7), no further approx-
imations are made in going from Eq. (7) to Eq. (8). Thus with a high degree of
probability, simple eigenvalues of T,, that are also eigenvalues of T, but not eigen-
values of T,_,, are spurious and should be discarded. Numerous numerical
experiments indicate that this is in fact the case and that this is a very clearcut test.
Exampies of this test are given in Table L

In practice the spurious eigenvalues of T, agree with eigenvalues of 7, to within
the accuracy of the computed eigenvalue of 7,,. (Note that there is an assumption
here that the eigenvalues of T, are being computed accurately.) Table I contains a
short interior subsection of the eigenvalues of the Lanczos tridiagonal matrices T,
and T, corresponding to a matrix 4 of order n = 465 with m =800 and a randomly

TABLE 1

Identification of Spurjous Eigenvalues Using T,

No. Eigenvalues 7, Eigenvalues T, Classification
355 1,6575563665800 1.6761152740989

356 1.6766121216492 1.6766121216490 Spurious

357 1.6766124392162 1.7022717813322 Good

358 1.7036032894951 1.7048494363508 Good

359 1.7048494363511 1.7100971481390 Spurious

360 1.7116026285662 1.7146602334798 Good

361 1.7146717833807 1.7301953401951 Good

362 1.7304603450048 1.7333484894705 Good

363 1.7333552278471 1.7369962479320
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generated starting vector. Observe two kinds of spuriousness in Table 1. Eigenvalue
356 of T,, is spurious but it is also close to a good eigenvalue which it is attempting
to replicate. Eigenvalue 359, however, is not replicating a good eigenvalue and is not
easily recognized as spurious.

We note that there is some disagreement among researchers. on Lanczos methods
as to the correct name for these extra eigenvalues. Paige [21] calls them redundant
and in fact in some situations they could be so labelled because they can actually be
observed converging to a multiple copy of an eigenvalue of 4. However, in general
this type of behavior is not observed. Spurious eigenvalues can appear in some
location in the spectrum of T, for some value of m, only to “disappear” from that
part of the spectrum when m is enlarged and perhaps. to- “reappear” as a totaily
different eigenvalue in some other part of the spectrum of T,. If we try to ‘track the
spurious eigenvalues as a function of m by keeping track of the differences between
the spurious eigenvalues at given values of m and the closest true eigenvalues of 4,
we find that as m changes these spurious eigenvalues approximate different eigen-
values of 4. They do not necessarily attach themselves to particular eigenvalies of 4.

To summarize the preceding discussion: First, numerically muitiple eigenvalues of
T, are accurate approximations to eigenvalues of 4. Second, simple eigenvalues of
T, that are also eigenvalues of T, are “spurious,” and should be discarded. Third,
simple eigenvalues of T, that are not eigenvalues of T2 should be kept as approx-
imations to the eigenvalues of the given matrix A. In the subsequent discussion we
will call these latter eigenvalues, along with the numerically multiple ones, “good”
eigenvalues of T,.

4. L.aNczos EIGENVALUE PROCEDURE

Lanczos Eigenvalue Procedure

A~1. For an appropriate choice of m, generate T,.

A-2. In the subintervals of interest, compute the eigenvalues of T,,.

A-3. Determine the numerical multiplicities of these eigenvalues.

A—4. Identification Test. For each simple eigenvalue of T, determine
whether or not there is an eigenvalue of T, that is pathologically
close to it. If there is, label that eigenvalue as spurious,

A-5.  Accept each multiple eigenvalue and each simple eigenvalue that is
not spurious as an approximate eigenvalue of 4.

A—-6. Estimate the errors in the simple “good” eigenvalues.

A-7. Terminate if the errors are satisfactory. Otherwise, using the error
estimates as a guide, decide upon an increment for m. Enlarge 7',
and repeat steps A—2 through A-6 on those portions of the
spectrum that are wanted but that have not yet converged.

This algorithm implicitly uses the following results of Paige [2, 4]. First, local near
orthonormality of the Lanczos vectors is preserved if the off-diagonal entries g, ; in

581/44/2-8
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T, are not “small.” Here smallness is scaled by the maximum of 1 and the norm of
A. Thus, the relationship between Lanczos tridiagonalization and the conjugate
gradient optimization procedure can be expected to be valid and we can expect
“convergence.” Second, if we have an eigenvalue of T, for which the error estimate
in Eq. (7) is small, then that eigenvalue is an eigenvalue of T, , for any £ > 0. Thus,
there is a great deal of freedom in the choice of m. Third, in any cluster of eigen-
values of T, there is some related eigenvector x such that || x| is not small. This is
needed in order to get good error estimates from Eq. (7).

Using this procedure we have replaced a general unstructured symmetric eigen-
value computation by a highly structured, in fact, symmetric tridiagonal eigenvalue
computation. The resulting tridiagonal eigenvalue problem can be completely solved
in at most O(m*) arithmetic operations, and the storage requirements are O(m),
where m is the order of the tridiagonal matrix. Typically m is some small multiple of
n, so that if the matrix-vector products Av; can be computed in O(r) arithmetic
operations, then the overall eigenvalue computation requires at most O(n?) arithmetic
operations and O(n) storage.

5. GENERATION OF T',, AND SELECTION OF THE ORDER m

The symmetric tridiagonal matrices T, are generated using Egs. (1) and (2). The
a;, f;+, computations require a matrix-vector multiplication 4v;, two inner products
of length n, and an additional 3n scalar multiplications/divisions and 2n
additions/subtractions. The major storage requirements are two vectors of length m
for permanent storage of the a; and f,,  as they are generated and two vectors of
length n for temporary storage of the vectors v; and v;_,. At the end of the T,
computation m, a, B, v,, v, are stored off-line so that if the computations are
rerun at another value of m, only the incremental a;, §;,, have to be generated.

TABLE I1

Cost of T, Generation®

Computation Multiplications/divisions Additions/subtractions
Av; pn (p—1)n
w,=Av,— v, _, n n
o= wTv n n
Zy=W; — a;V; n n
= N e —————————
! ‘
Tt 71 T T
Cost/iteration (p+5)n (p+3)n

“ p= average number of nonzero entries in each row of A. For some matrices thé cost of computmg
Av; may be less than (2p — 1) n.
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The overall costs of the T, generation are summarized in Table II. The primary
cost is the computation of the Av,. The original matrix 4 appears only in- this
computation. The subroutine which computes Ax must be optimized to take
advantage of any sparsity and/or structure in 4. We emphasize that there is no
requirement that 4 be sparse. It is only necessary that the Ax computation be
accurate and economical.

The plausibility arguments for convergence of the eigenvalue procedure require at
least local near-orthogonality of the Lanczos unit vectors, v;, I i<{m. As we
mentioned earlier, Paige [2] has proved that this local orthogonality is preserved as
long as the 8, are not too small. To illustrate that in practice the f; do not become
too small, we list in Table III the minimal |8,|/| 4| encountered in each of the test
problems considered in Refs. [20, 26, and 29]. || 4| denotes the spectral norm of 4.

The user must specify a value for m, the order of the tridiagonal T,,. Selecting a
value that is larger than that needed to obtain the desired eigenvalues results in more
computation than is necessary. The Lanczos Phenomenon tells us that for large
enough m the eigenvalues that we want to compute will appear as eigenvalues of T, .
Paige’s results [2] suggest that these accurate approximations to eigenvalues of 4 will
be stabilized eigenvalues of T,,. That is, they will aiso be eigenvalues of T, for any
larger value of m. The problem is to select a large enough m, but not too large in the
sense of the resulting amount of computation required.

By example, we illustrate the dependence of the size of T, required upon the local
density of the eigenvalues of 4 that we are trying to compute and upon the overall
gap stiffness of 4. We need to introduce the following three definitions.

DerINiTION 3, Given a matrix 4 with distinct eigenvalues 4, <4, < - <4,
define the minimal gap g; for each 1;, j=2,..,9— 1 as

g=min{d;,, — A, 4 —4,_, ) 9

7 i

TABLE 111
Minimal |8, , /14 ]

Test Order Order Minimum

matrix A T, 18151 a4l Ratio
POIS992 {26} 992 5952 0.55 40 0.14
POIS1008 {29] 1008 1764 0.33 4.0 0.08
KIRK250 250 2000 0.85 102.4 0.0083
KIRKS567 |26] 567 1134 L1t 4.7 0.24
KIRK.992 [26] 992 2976 1.57 5.5 0.29
KIRK 1089 {20] 1089 4904 1.71 102.4 0.617
KIRK 1600 1600 4800 1.39 102.4 0.018

KIRK4900 4900 29404 2.29 102.4 0.022
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DEerFiNITION 4,  Given the minimal gaps defined in Eq. (9), define the overall gap
stiffness of the matrix 4 as

S, = max g;/min g;. (10)
J J

DEeFINITION 5. The stiffness of the matrix 4
0(A) = max |A;|/min |1,]. (11)

Numerical evidence indicates that the convergence of a given eigenvalue depends
upon the relative position of that desired eigenvalue in the spectrum of A4, the local
gap structure which is partially described by the minimal gaps, and the overall gap
stiffness. Typically, reasonably well-separated eigenvalues on the extremes of the
spectrum of A4 will appear as eigenvalues of T, for relatively small values of m < n.
Well-separated interior eigenvalues can converge as fast or faster than clustered
extreme eigenvalues; see [29] for an example. Tightly clustered eigenvalues in the
interior of the spectrum converge most slowly. If the overall gap stiffness S, is very
large, one may have to use a very large m, for example, of the order of 10x, to obtain
good approximations to the eigenvalues with smaller gaps. An exception to this
comment are pairs of close eigenvalues. Pairs can be computed for reasonable size m.
The slowdown in convergence occurs when the desired eigenvalues are very close
together and in sets of three or more.

Example 1 in this section is a worst case example. The smallest eigenvalues do not
converge until m = 10x. The problem is the gap structure. Very large eigenvalues with
very large gaps converge for very small values of m and immediately begin to
replicate, making it difficult to compute the other eigenvalues. Example 2 is a best
case. For this matrix all of the minimal gaps g; are in the range

q
8./10< g <508,  where g, =3 g/q. (12)

j=1

By m = n the eigenvalues of Example 2 are computed to at least 10-digit accuracy.

In practice, the gap structure of the matrices being considered is somewhere
between the extremes of Examples 1 and 2. In general for matrices without extreme
differences in gap structure, most of the eigenvalues of 4 can often be computed
readily, typically with m < 3n, where # is the order of 4.

With our procedure it is suggested that if the user has no a priori knowledge of the
eigenvalue distribution in the given matrix 4, then the eigenvalues of T,,, in the
desired portion of the spectrum, should be computed for m = 2n or m = 3n, along
with estimates of the accuracy achieved in these computed eigenvalues, (See Section 6
for the T, eigenvalue computations and Section 7 for the associated error estimates.)
An examination of the “good” eigenvalues of T, at this size m will yield a reasonable
picture of the degree of difficulty that exists in computing the remaining desired
eigenvalues. Typically, at this value of m reasonably well-separated eigenvalues will
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TABLE 1Va

KIRK323, Using Error Estimate to Identify Convergence
NX =19, NY =17, SCALE = 100, CONC = 0.43

341

Subintervals

Order Good Estimates Mutltiple not yet
T, eigenvalues <1078 eigenvalues converged
IMTQL1 version
162(n/2) 156 22 4
324(n) 257 84 27
486(3n/2) 288 260 67 2
648(2n) 295 262 130 2

BISEC version on [—0.0646, —0.0001) and [100.00, 100.071], the intervals identified at m = 648

810(51/2) 303
972(3n) 311
1615(5n) 323 323

have converged and “clusters” of eigenvalues can be identified. Unfortunately, we
cannot give precise definitions for “reasonably close” or “clusters.”

We -illustrate this behavior in Tables IVa and IVb, where we summarize the
convergence of all of the eigenvalues of a test matrix of order n = 323, KIRK323, as
we vary m. This test matrix and those used in Section & were obtained from
Kirkpatrick [30]. We emphasize that in practice one would only consider those eigen-
values of interest to the user, and that one would probably not increment w more

TABLE IVb

KIRK323, Using Error Estimates to Identify Intervals®
that Have Not Yet Converged, m = 486 = 3n/2

Computed eigenvalue Error estimate Computed eigenvalue

Error estimate

99:69345907221 46x 1071 99.74127355265 34x 1077
99.78647655872 4.8x 107" 100.0042901351 5.4 % 1077
100.0064558804 0.014 100:0089484518 0.023
100.0157798193 0.029 100.0202438828 0.037
100.0266106159 0.058 100.0309946559 0.083
100.0384058572 0.050 100.0416252110 0.037
100.0598920091 4.7x 1073 100.0644780713 22X 1077
100.0663591154 40x107° 100.0701493382 L5x 107t
100.2301831999 1.8x 1071 100.2797369242 9.5 x 107

? Intervals indicated at m = 486(3n/2) are [—0.076, 0.007] and {99.99, 100.08]. At m=648(2xn), the

intervals decrease to [—0.0646, 0.0001] and [100.00, 100.071}.
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than once. We are doing extra computation just to observe the rates of convergence.
At m = 3n/2 the error estimates clearly identify the subintervals of the spectrum that
have not yet converged. Some of these error estimates are given in Table IVb. For
m = 162 through 648, the counts in Table IV were obtained using the original version
of our Lanczos procedure which computes all of the eigenvalues of both T',, and of 7,
and then uses the error estimates in Eq. (8). This approach is expensive and is not
recommended. Other versions of our programs, as will be discussed in Section 6,
P A 1 - - . . .

— -, s - -

E
T,,. The polynomials in Eq. (8) were computed using the computed eigenvalues of 7',
and of T,. For m =810, 972, and 1615, the information in this table was obtained
using a Sturm sequencing version of our procedure.
The following examples were suggested to the authors by Widlund [31]. Here we
consider the question of computing all of the eigenvalues of each of these example
matrices.

ExamPLE 1 (Worst Case). Let A,(i,/) = min(i, /). We note that 4, =L 'L, 7,
where L, is bidiagonal with L,(7,i)=1 and L,(i,i — 1)=—1, 1 i< n. We consider
n=150.

At n=150, A, has eigenvalues that increase in magnitude from A, =0.25 to
A 150 =9180 and more importantly the gaps between successive eigenvalues increase
monotonically from 8 X 10~° at 4, to 8000 at 1,,,, a gap stiffness of 100 million. As
m is increased convergence occurs monotonically from A,,,=9180 down to
A;=0.2500. The smallest eigenvalues, even though they are at the lower extreme of
the spectrum, converge last. Convergence to. at least 5 digit accuracy on all 150
eigenvalues occurred (1 was blindly incremented by >300) by m = 1500 = 10x.

Thus, in order to achieve convergence on all of the eigenvalues of 4,, it is

TABLE V

Convergence of Lanczos, 4, (Worst Case)

Number of Eigenvalues Eigenvalues
Order eigenvalues accurate” to accurate’ to
T, approximated > 10 digits > 5 digits

50 30 14 15
300 79 43 48
750 119 70 75
1200 141 98 104
1500 150 119 150

¢ At m = 50, 300, 750 these counts were obtained from the estimates obtained using Eq. (8) and are
probably conservative. At m = 1200 and 1500 these counts were obtained by comparison with T'j,4,.
The exact eigenvalues of 4, could have been computed and used in this experiment but were not.
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necessary to use a very large m. Whether or not it makes sense {o even use our
Lanczos procedure on such a matrix. depends upon what the user is trying to
compute. The eigenvalues at the upper end of the spectrum of 4, appear at relatively
small values of m and can be computed readily by this procedure. See Table V.

Two comments are important. First, our Lanczos procedure assumes that the
eigenvalues of the tridiagonal mairices are computed accurately. If the original matrix
A has an eigenvalue distribution that would be difficult for the eigenvalue subroutine
being used to resolve, then our Lanczos procedure will not be able to perform
properly. Second, the goodness of the numerical results reported in this paper were all
measured by using error estimates. Test results for matrices where we knew the true
eigenvalues and used them to estimate convergence have also been reported {29].

If we consider 4, =A7"' then we obtain a “best” case matrix for our Lanczos
procedure.

ExAMPLE 2 (Best Case). A,=A;", n=150 and n = 300.

For n =150, 4, has eigenvalues that vary in magnitﬁde from 4, = 1.089 X 10" * to
Aisp = 3.99956. The corresponding minimal gaps increase monotonically from
8.7 X 107* at A, to maximum of 4.17 X 10 7% at A, and then decrease monotonically
to 1.307 X 107* at 4,,,. The minimal gap distribution is fairly uniform. The more
uniform the gap distribution or equivalently the smaller the gap stiffness, the more
easily the Lanczos procedure can compute the desired eigenvalugs, in the sense that
by m not much larger than » all of the eigenvalues of 4 have been computed with
good accuracy. In fact we have the following very interesting results.

Table VI indicates that all of the eigenvalues of 4, converge more or less
simultaneously. The extreme eigenvalues of 4, converge at approximately the same
time as the interior eigenvalues, so computmg a few extreme eigenvalues is as
expensive as computing all of the eigenvalues. By m = n all of the eigenvalues of 4,
have been apnroximated to at least 10 digit his is probably due to the fact that the

Convergence of Lanczos, 4, (Best Case)

Eigenvalues
Order 4, Order Figenvalues accurate” 1o
n T, approx. > 10 digits
150 50 50 0
90 90 0
150 150 150
300 100 100 0
200 200 0
300 300 300

“ These counts are based upon error estimates computed using Eq. (8).
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effect of location of a given eigenvalue in the spectrum is balanced by the gap
structure. The minimal gaps increase monotonically as we move from the lower
extreme of the spectrum to the center. They then decrease monotonically as we move
on out of the center to the upper extreme. With all of the eigenvalues being approx-
imated at essentially the same rate, there should not be any significant losses in the
global orthogonality of the Lanczos vectors. Therefore, convergence can be achieved
in approximately m = n iterations. In this situation, if one wants to compute all or
many of the eigenvalues of 4, then the Lanczos procedure is ideal.

These tests and others indicate that the matrix gap stiffness, as defined in Eq. (10),
is the primary key to understanding the convergence of the Lanczos eigenvalue
procedure when there is no reorthogonalization of the Lanczos vectors. Tests verify
that to within the limits of the accuracy of the eigenvalue subroutine used, the
stiffness of the matrix is not a primary factor in the convergence of the Lanczos
procedure. This is not unexpected since at least theoretically, the matrices 4 and
A + 1l generate the same Lanczos vectors, and thus have the same convergence rates,
but for an appropriate choice of 7, a(4 + tI) will be small even if 6(4) is very large.

Examples 1 and 2 illustrate a tradeoff between using a given matrix 4 and in using
its inverse. For Example 1, we had to compute eigenvalues of a tridiagonal matrix of
size m = 1500 = 10n, whereas for Example 2 we only needed m =n = 150. The
related apparent decrease in cost must, however, be balanced by the increased cost
incurred in replacing the 4,x computations by the repeated solution of the equation
A, p=v;. This must be done on each iteration of the recursion in Eq. (1). If for a
given A, the equation Ax = b can be solved cheaply; and if in fact the gap distribution
in 47! is radically superior to that in A, then it is possible that the cost of the
Lanczos computation can be reduced by replacing 4 by 4 ~'. However, one should
note that there may be no gain in using 4 ' instead of 4. For example, if 4 is of
order 4 with the eigenvalues 10~°, 10~%, 100, and 10,000, then 4 ~' has the eigen-
values 10°, 10%, 0.01, and 10~*,

6. COMPUTING AND IDENTIFYING EIGENVALUES OF T,

There are basically two versions of our Lanczos eigenvalue procedure. Computer
programs are given in [19]. One version uses the EISPACK [1] program, IMTQLI1,
and the other version uses a modified version of the EISPACK Sturm sequencing
subroutine BISECT, which we call BISEC. The storage required depends upon which
version is used, and upon what the user is trying to compute. However, both versions
require at most a (6m + n/2) double precision array (if m > n), plus whatever storage
is needed to generate the products Ax. Depending upon what one is trying to
compute, this storage can be reduced further by modifying the way in which quan-
tities are handled within the programs. Some ways of doing this are mentioned in
[19].

IMTQLI1 is an implementation of an implicit QL algorithm for computing all of
the eigenvalues of any symmetric tridiagonal matrix. There is no guarantee that the
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eigenvalues generated will appear in any particular order, either algebraic or
magnitude dominant. Thus, even if one wants only a few of the eigenvalues of T,
IMTQL1 may have to compute all of the eigenvalues just to get those few. As
programmed, IMTQL]1 uses two vectors of length m. On entry these contain the «;
and B, , arrays. Both arrays are destroyed, and on exit the g-array contains the
computed eigenvalues in ascending order. The computational cost is O(m?).

BISEC is a Sturm sequencing procedure, Jennings {8, Chap. 9], and can therefore
be used to compute the eigenvalues of T, in any subinterval. Three vectors of length
m are needed for the a, B, and B* arrays. Vectors are also needed to store the
computed eigenvalues of T, and the running set of upper and lower bounds for the
eigenvalues being computed on the subinterval being processed, The subintervals
provided by the user are considered sequentially in algebraically increasing order.
Starting at the lower end of a subinterval, the procedure computes successively the
distinct eigenvalues of T, in ascending algebraic order, locating eigenvalues to within
a given tolerance set by the procedure using the machine epsilon. The machine
epsilon is the smallest number ¢ which when added to one yields a number not equal
to one. The Sturm sequencing property states that the number of sign changes in the
determinants of the successive leading principal minors of a given symmetric matrix
(B — ul) equals the number of eigenvalues of B that are less than u. By considering
two values g, <u,, we can compute the number of eigenvalues in the interval
[1,4,). These determinants are scale dependent and their use can quickly lead to
either underflow or overflow. Therefore, the procedure uses ratios of these deter-
minants.

Numerical tests indicate that for any m, the identification test (A—4) is sufficient as
long some eigenvector corresponding to each eigenvalue of interest has a reasonable
projection on the starting Lanczos vector v,. That is, any such eigenvalue of 4 will
not be mistakenly labelled as “spurious.” Numerical tests also indicate that the iden-
tification test can identify all spurious eigenvalues due to losses in orthogonality. It
can in fact, do more than this and, at least for large m, even identify spurious eigen-
values caused by pathologies in the particular matrix or starting vector chosen.
“Large” is used in a relative sense and depends upon the given matrix.

Lewis [32] has constructed a matrix 4 that does not have 0 as an eigenvalue but
for which one particular choice of starting vector v, yields matrices. 7, which have 0
as an eigenvalue whenever m is odd. The corresponding eigenvalues of T, oceur in +
pairs and whenever m is odd, 0 is not an eigenvalue of 7. The spurious eigenvalue 0
is an artifact of the special construction of 4 and the special choice of v,. It is not
due to any losses in orthogonality. Initially for “small” m, the Lanczos procedure
does not recognize 0 as spurious. However, as m is increased and more information
about 4 is accumulated in T,,, the procedure does in fact recognize 0 as spurious. On
several tests with Lewis matrices of size n =101 or 100, for any m > 1.3n, the
“spurious” test labelled O as spurious. In fact as m is increased, one observes a pair
of eigenvalues of T, converging to 0. Once a member of this pair is within the iden-
tification tolerance, 0 is labelled as spurious.

It is easy to see that we do not need to compute the 7, eigenvalues in order to do
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the identification test. We are simply trying to determine if there is an eigenvalue of
T, pathologically close to a given simple eigenvalue u of 7,. With a properly chosen
€, it is sufficient to compute two Sturm sequences, one on the matrix T, — (u + &) [
and the other on T, — (u — &,) I to determine if T , has an eigenvalue within &, of .
We chose ¢, relative to the estimated size of the error in the computed u. In practice
we use

&= 2 X (1000 + m) X machep X Ascale, (13)

where

Ascale = max(|u,], 1) if all eigenvalues of T, are computed

=max(|a;], |f;;:l, 1)  otherwise.

In Eq. (13) machep is the machine epsilon.

If, as in the IMTQLI version of our Lanczos procedure, this test is applied directly
to each eigenvalue ¢ of T,,, then the cost is approximately 6m arithmetic operations
per eigenvalue tested. In the BISEC version, however, this test can be directly incor-
porated mto the elgenvalue computatlons and the cost is neghgxble, addlng only a few

T TIOT e PTTUTT v.v-,.u.uu.,._..l TTo T \g T TECTITITC Y TTCroT

insure that a given eigenvalue of T is not allowed to eliminate more than one eigen-
value of T,,. If an eigenvalue g4 of T is in the intersection of the ggintervals for y;
and u;, ,, then both would be eliminated by that 4. In the BISEC version this does
not happen because (i) each isolated g, is really the center of an interval [I,, u]
which defines that eigenvalue: (ii) the distance, [, —u,_,, between successive eigen-
values of T, is greater than ¢, and (iii) if g, is spurious, then the corresponding
eigenvalue of 7 I is typically in the very small interval [/;, ;). (If 4; is good then no
eigenvalue of T, is within ¢, of 4;.) Thus, in BISEC we can combine the multiplicity
and spurious tests using the same &, for both of them. This simplifies the procedure
considerably. Another way of stating (iii) is simply that if an eigenvalue is spurious,
then the closest eigenvalue in 7, is within the tolerance of the eigenvalue
computation. In the IMTQLI1 version, the possibility of overlapping intervals is
avoided by simply using g, for the multiplicity tests and ¢,/2 for the identification
test. For an example of the use of the identification test see Table I

In both implementations once a given eigenvalue 4 of T, has been computed, we
first determine its numerical multiplicity. Then if it is numerically simple, we
determine whether or not it is spurious. In BISEC of course this is all done in one
computation.

If in fact, all of the numerically multiple copies of a given eigenvalue u of T, were
computed accurately, and the check for spuriousness were done before the check for
numerical multiplicity, then not only the “real” spurious eigenvalues would be
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discarded, but also all except one copy of each numerically multiple eigenvalue would
be rejected. Empirical results indicate that the one copy left is the most accurate
approximation of the several copies. For an example of this see Table VIIb in {33].
We do not do this. Not only would it be more expensive, but aiso we would not be
able to get meaningful error estimates. In particular, in BISEC only one copy of gach
numerically multiple eigenvalue is computed, and since it is the first copy we
encounter, it is not necessarily the most accurate of the multiple copies.

Once the “good” eigenvalues are identified, we must estimate their accuracy. In
Section 7 we give two ways for computing error estimates for simple “good” eigen-
values. These estimates, however, are not valid for numerically multiple eigenvalues
or for eigenvalues that are being replicated. However, numerically multiple sigen-
values are accurate approximate eigenvalues of 4, [26], so there is no reason to
compute error estimates on them. Moreover, eigenvalues do not normally begin to
replicate until they have converged. This observation is in agreement with the resul
of Paige [2] that the losses in orthogonality observed are due to convergence of
eigenvalues of T, to eigenvalues of 4. .

In determining multiplicities, small ambiguities may occasionally occur because we
can only estimate the accuracy of the tridiagonal eigenvalue computations. It is
possible for two “good” eigenvalues that agree to 10 digits or more to be labelled as
distinct.  Therefore, after the  eigenvalue  computations and. the
identification/multiplicity tests, and before computing the error estimates, we go
through the list of “good” eigenvalues and combine eigenvalues that differ from each
other by less than a user-specified tolerance, RELTOL. Specifically, two eigenvalues
; and g;,, are combined if |u;—u;,  |/max(jg;], 1) < RELTOL. We average the
“good” eigenvalues that have been lumped together, weighting the eigenvalues by
their multiplicities. The numerical multiplicity is increased accordingly and this count
included any. spurious eigenvalues. Error estimates are then computed only on the
“simple” good eigenvalues.

Our Lanczos procedure uses the matrix T, to identify those eigenvalues of T, that
are spurious. The remaining eigenvalues of T, are taken as approximations to eigen-
values of A. The related procedures, van Kats and van der Vorst [15, 16}, and
Edwards et al. [18] approach the identification problem differently. Instead of trying
to identify which eigenvalues should be discarded; they try to identify which eigen
values have converged to within a user-specified tolerance. These eigenvalues are then
accepted. The eigenvalues that do not satisfy their respective tests are discarded. Van
Kats and van der Vorst compute the relevant eigenvalues of both T, and of T',,_, and
then compare them. Basically, any eigenvalue of T, that is also an eigenvalue of
T,,_, to within a user-specified tolerance, is accepted as a good approximation to an
eigenvalue of 4. Edwards er al. compute only the eigenvalues of T,,. If for some
k « m there are at least two eigenvalues of T, in a user specified, tolerance interval
about an eigenvalue g of T, or if a root trapping condition is satisfied on that
interval for T, then p is accepted as a good approximation to an eigenvalue of 4.
The other eigenvalues of T,, are rejected. Thus, at a given m, for either of those two
algorithms, one can expect to have identified only those eigenvalues that have
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converged to within the specified tolerance. Eigenvalues of T, that are fairly good
approximations to eigenvalues of 4 may not have converged sufficiently to be iden-
tified. If we relax the tolerance used in this identification to help identify “good”
eigenvalues before they have fully converged, then we may combine a “good” eigen-
value with a nearby “spurious™ one and thereby reduce the accuracy of the resulting
combined eigenvalue approximation. With the 7' , test, on the other hand, we only
throw away spurious eigenvalues. “Good” eigenvalues, even if they are accurate to
only a few digits, will be retained. Thus, we are able to estimate the degree of
difficulty in computing the remaining desired eigenvalues. We get a clearer picture of
the overall eigenvalue distribution in the original matrix.

7. ESTIMATING CONVERGENCE

Two different types of error estimates for the simple, isolated, good eigenvalues are
considered. Numerically multiple eigenvalues of T, are converged approximations to
eigenvalues of 4. Moreover, any “good” eigenvalue of T,, with a spurious eigenvalue
close to it is also accurate.

Various forms of an error bound were given in Egs. (7) and (8). For reasonable
size m and ||4]|, ¢, in Eq. (7) is the key to estimating convergence. Furthermore from
Paige [2], we have that || Vx| > 0.5 for isolated eigenvalues g, so that Eqs. (7) and
(8) provide a bound on the error in each of these computed eigenvalues. In practice
this bound is a good but conservative reflection of the error in such eigenvalues.

The IMTQL1 version of our procedure computes all of the eigenvalues of T,,.
Within this version there are two options, one of which also computes all of the
eigenvalues of T',, and the other which does the identification of spurious eigenvalues
by Sturm sequencing. If all of the eigenvalues of Tz are available, then we can use Eq.
(8). From Eq. (8) we have that ~

m+1

&, = Bz |Bel/ lap ) &)} . (14)

Only the denominator of ¢, is a function of g, and it is computed by taking multiples
of differences of eigenvalues of the T, and of T,. The numerator and denominator
can both be very small or very large depending upon the scaling in the original
matrix 4. For example, for a test matrix of order n = 4,900 with m = 29,400 = 6n,

29,400

n 1B, = 0.14 X 1626443,

k=2

The ratio ¢,,, however, is well-behaved. We use scale invariant arithmetic, to compute
&, in Eq. (14), working separately with the mantissa and the exponent of each factor
in the products. This approach to estimating errors in the computed eigenvalues is
very expensive because it requires two large eigenvalue computations.
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A less expensive approach is to compute the related eigenvectors of 7', and then

to use the corresponding mth components of these vectors directly in Eq. (7). These
% A~ H 1 H 1 arc_ocnd Vlhluwooe

eigenvector because we need the mth component of the unit eigenvector
corresponding to u. For reasonably well-separated good eigenvalues with no nearby
spurious eigenvalues, this approach yields good estimates of the error.

Theoretically, this approach and the one using all of the eigenvalues of both
matrices yield the same estimates of the error. In practice, they yield approximately
the same estimates unless there are spurious eigenvalues close to the good eigenvalue

TABLE VII

POIS1008, Comparison of Error Estimates with True Error

Error estimate

Order Computed inverse iteration
T, eigenvalue on T, True error

m=1008 =n 1.6606618191 9.4 x 1073 LIx107*
1.6614072619 1.6 x 1072 6.4 % 107
1.6688217735 15X 1073 2.6 x 107°
1.6719607187 LOX 1073 277 %x10°°¢
1.6741447482 8.6x107¢ 17X 1078
1.6923622232 22%x107* 52x 10678
1.6951062486 L7x 107 29x 1078

m=1126=1.117n 0.2690507887 8.6x 1071 33x 1071
0.2824386303 1.0x 1078 62x 1071
0.3171884350 1.7x 10°° 25% 107
0.3190091584 6.7% 1075 58x 1071
0.3228590426 50%x10™* 52x% 1078
0.3576650427 22%x107° 6.0 107°
0.3628420891 3.6 X 1077 89x 1077
0.3633926493 7.8 % 1073 1.2x10°*
0.3640244896 25% 1072 5.1x10™
0.3688971202 9.7x 107° 1.4x 1078
0.4839359213 56 %1072 31x10™¢
0.4842754360 92x 107* 1.8x 1077
0.8475498551 7.9 % 16~ 6.6 X 1078
1.6719874543 59%107% 53x 1077
1.6741464513 1.8 % 107° 49% 10710
1,6923622747 43 %1077 6.6 X 107
1.6951062773 3.0%x 1077 2.1x 107"

m=1512= 1.51 1.6607681953 40x10°¢ 98 % 1071
1.6620674206 42 %1012 24 % 10-8
1.6688243645 1.7%x 1071 2.1x 1078
1.6718896888 1.0 x 10-12 23 x10°9

1.6719879819 63%10°8 1.8 x 1071
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being considered. In Table VII, we give a comparison of the computed error estimates
using inverse iteration on 7, and the true errors in the computed eigenvalues for a
test matrix of order n = 1008. See [26] for a description of this Poisson test matrix.
The eigenvector computation requires less than 10 arithmetic operations per eigen-
value tested. A slightly modified form of the EISPACK [1] subroutine TINVIT was
used to do the inverse iteration.

We have observed numerically that within a given subinterval of the spectrum,
convergence occurs primarily according to minimal gap size. Therefore, we do not
need to compute error estimates on every computed eigenvalue. It is sufficient to
compute estimates for some representative selection of the computed good eigen-
values with small gaps.

Convergence is said to have occurred when the error estimates on all of the
isolated good eigenvalues in the desired subintervals of the spectrum are small
enough. In practice, it is typically true that the actual error is a factor of 100 or more
smaller than the error indicated by the error estimate, whenever the error estimate
indicates convergence of a given eigenvalue to eight or less digits.

8. CONVERGENCE, ILLUSTRATED BY EXAMPLE

For a given matrix A and a corresponding Lanczos tridiagonal 7, the question of
whether or not a given subset of the eigenvalues of A4 can be approximated by eigen-
values of T,,, depends primarily upon the gap structure in the matrix 4 and upon the
relative locations of these eigenvalues in the spectrum of A. The effects of the choice
of the Lanczos starting vector v,, of scaling the matrix (replacing 4 by ad) or of
shifting the matrix, (replacing 4 by 4 + ol) all seem to be secondary; see [33]. In
addition, examples in [33] indicate that different implementations of the Ax matrix-
vector multiply subroutine lead to very different a, § sequences, but that there are no
significant differences in the actual convergence of the eigenvalues as a function of m.
In exact arithmetic one would expect no difference in convergence, but this insen-
sitivity also seems to be valid in practical computations. Without this insensitivity,
the Lanczos procedure would not be very attractive.

To eliminate the possibility that the observed convergence of our procedure was
due to some hidden structural properties of the test matrices, we ran some tests on
matrices whose sparsity patterns and entries were determined randomly. Tests 1
through 5 used a uniform distribution. Tests 6 through 9 used a Gaussian
distribution. The results of several of these tests are given in Table VIIL

To test the effectiveness of this procedure on very large matrices, we ran tests on
two large diagonally disordered matrices obtained from Kirkpatrick [30]. One of

in the study of two—dirinénsricr)nai' arfays of atoms inL diéordered systems; —sée, &g,
Kirkpatrick and Eggarter [35] and Hori [36] for details. Both matrices have order
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TABLE VIII

Observed Convergence on Randomly Generated Matrices, n = 100.
Tests 1-5, Uniform Distribution, Tests 6~9, Gaussian Distribution

Number rror Number
Test Order good estimates multiple
No. T eigenvalues <107® cigenvaiues

1 50 50 $ 0
RANDOM1I 100 87 31 5
nnzero® =5 150 100 87 23
rseed® = 35613297 200 100 100 36

3 50 50 3 0
RANDOM3 100 89 24 5
nnzero = 11 150 100 100 19
rseed = 215372912

4 50 50 1 0
RANDOM4 100 90 25 4
nnzero = 35 150 100 100 18
rseed = 93262178

6 50 50 7 g
RANDOMG!1 100 84 29 7
nnzero = 5 150 106 77 23
rseed = 35613297 200 100 1060 32

8 50 50 i g
RANDOMG3 100 90 26 4
nnzero = 11 150 100 100 18

rseed = 512743219

“ nnzero is the average number of nonzero entries in each row and column. rseed is the seed used by
the random number generator to generate the locations and values of the nonzero entries.

n=NXXNY, where NX is the number of rows of atoms in the lattice being
considered and NY is the number of atoms in each row. If NX and NY are relatively
prime, then all of the eigenvalues are distinct. Each matrix is almost block
tridiagonal. Each subblock is NY X NY and there are NX blocks B; down the
diagonal. Off-diagonal blocks C are unit matrices of order NY. Specifically, the
structure of each of the two test matrices is as follows.

B, C C x 1 1
C B, P 1ox
(15)
\ . \
C By

The diagonal entries of each B; are denoted by x’s. Each such entry is either 0 or 2
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from the Desired Intervals (0.1, 0.9) and (1.1, 1.9)

T,, error estimates

No. Computed “good”
T, eigenvalue Amingap m=2n m=73n
1 0.108538583112 7.88 x 1073 62x107° 1L.7x 1078
2 0.116416158091 2,16 x 1073 8.4 x 1074 L5x 107"
4 0.125695041582 2.89 x 10~* 5.7x 1073 4.7x10°
5 0.125984202306 2.89x 10~* 8.4 x 1072 29x107°
6 0.131418112867 1.35x 1073 2.7 x 1072 2.1x 107
8 0.140417747900 4.55x 1073 1.2x 107! 1.3x 1071
10 0.150454046930 1.83x10°° 44 %1072 1L9x 10"
12 0.159800239400 5.49 x 1073 6.4 x 1072 6.8x 107"
16 0.177438347611 422% 1073 1.3x1077? 1L7x 107"
19 0.190218830700 4,28 x107* 1.2x107? 3.6x 107"
20 0.190646629966 4.28 x 10~* 14 x 107! 1.6 X 1071°
22 0.200427830536 1.42x 1077 9.0 x 1073 7.5 x 107"
23 0.206726824189 6.31 x 107° 7.7x 107} 4.6 x 10710
24 0.215522650233 880 % 107F 3.6x1073 22x1071°
25 0.226869995768 9.31 x 10~* 1.9x107? 21x 107"
26 0.227801354882 9.31x107* 1.9x 1072 2.6 x 107"
27 0.233284125230 4.99 x 1073 1.5x 107! 5.4x 1071
37 0.284620457955 2.94x 1074 6.5 x 1072 22x107°
38 0.284914076578 2.94 % 107* 6.5x 1072 73x 107"
39 0.287331647984 242 x 1073 6.7%x 1072 1L6x 10710
42 0.301819018495 4,90 x 1073 58x 1072 9.9 x 1072
50 0.337456734943 1.75 x 1073 7.8 x 1072 2.8%x 107
51 0.340359554960 2.90 x 1073 2.7x 1072 42 %1071
52 0.345027218837 424 %107 1.7x 1071 6.1x 107"
53 0.349263240798 424x 1077 1.7x 107! L5x 1071
61 0.394564131019 5.83x 1073 1.4x107? 7.3x 107"
75 0.458740930982 149 x 1073 53%x 1072 44x1078
76 0.460646869314 1.91x 1072 53%107? 31x107?
77 0.463079289643 8.74%x10°* 7.7 x 1072 20x 1077
78 0.463952947950 874 x 107* 7.7x 1072 9.3x10°¢
79 0.469996198976 2.07x 1073 1.5x 107! 1.7x 1078
84 0.487543746200 3.37x 1073 44 %1072 1.0%x 1077
85 0.491162147199 1.90 x 1072 8.9x107? 5.4 x 1077
194 1.22970513552 427x107* 25%x107? 6.9 X 107'°
195 1.23316155483 3.46x107° 14x10°* 7.3x 107"
196 1.24376265893 9.50 x 1073 20x10°°¢ 1.2%x 1071
197 1.25326700799 8.10x 103 1.3 x107°¢ 4.9 x 107"
208 1.31796912319 2.01x1073 2.3%x107° 1.3x 101
209 1.31997989839 201x1073 7.2x 1071 1.5x 1071
210 1.33085004976 1.09 X 1072 3.6x 107" 7.5x 107"
211 1.35121009484 6.86 x 1073 4.2 %101 1.2x10°¢

Table continued
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TABLE IX—Continued

T, error estimates

No. Computed “good”

T, eigenvalue Amingap m=2n m=3n
212 1.35807260268 511x107° 8.4 x 107" 52x 107"
224 1.42478180911 1.84 x 103 4.8 x10°% ixio
228 1.44227149920 2.85x 107°? i1 x 1078 2.6 %1071
229 1.44737404957 3.81x10°°? 43%x 107t 40%x 1074
230 1.45118307212 2.01x10? 1.5%x 1078 6.5%x 1071
231 1.45318924956 2.01x10°° 7.0x 107°¢ 3.5x 107"
235 1.48529412782 4,82 x 1073 62 %107 48x 107
237 1.49507705148 1.97 x 107° 3.5%107° 7.4 x 107"
238 1.49704459217 1.97x 107° 1.5x10°° 1.7x 1071
239 1.50095617662 231 x10°° 68x 107° Lix 1071
240 1.50327060040 231x10°° 4.6 x107"° 1.4 %1078
241 1.51449833393 9.75x 107? 2.1x 107" 25%x 1078
246 1.55118529474 817x107° 35x 1071 3.2x107°
247 1.55935806886 4,90 x 107* 14 x 107" 1.9x 107"
253 1.59459760474 2713 % 107° 1.3%x107° 7.9 % 10712
259 1.62312291087 179 x 1077 29x 107 1.2x 107"
261 1.63206807498 493 x107° 8.1x oY 40%x 107"
269 1.68524491144 233x 1077 4.7x 1071 1L x 107"
272 1.69772589111 7.03x 107? 4.6 X107 3.8x 107
276 1.73644464833 2.11x107°? 2.1x 107! L9 x 11
282 1.77045953991 538 x 1077 1.3 x 107 L1x167°
284 1.78224457221 6.08 x 10°* 12x107° 40x%x107°
285 1.79998356852 1.40 x 1073 2.7 x 1071 L7x 1071
289 1.81850663242 519 x 1077 33 x 107 1.8 % 107!
296 1.84876906280 221x 107} 29x 10710 2.8x 10711
300 1.87276141363 6.22 X 107° 4.4 x 167" 5.9 x 107"

quantity which we call SCALE. When A4 is constructed, this determination is made
by calling a random number generator to produce numbers R between 0 and 1. If a
given R > CONC, where CONC is a concentration specified by the user, then the
corresponding diagonal entry in B, is set equal to SCALE, otherwise it is set equal to
0. The random number generator is called » times to generate the diagonal of 4. All
of the nonzero off-diagonal entries are 1. For KIRK 1600, NX =40, NV =40,
CONC = 0.7, and SCALE = 100. For KIRK 4900, NX = 70, NY =70, CONC = (.7,
and SCALE = 100.

KIRK 1600 was analyzed in detail. For m = 4800 = 3n we computed all of the
cigenvalues of 7, and of T,, and then used Eq. (8) to compute error estimates on the
isolated eigenvalues., The eigenvalues of KIRK1600 range from 3.511 to 102.37.
There are no eigenvalues in the interval (3.499, 97.67). At m = 3n = 4800, 1468
eigenvalues are being approximated. Convergence to at least nine digits is observed
on all eigenvalues except the eigenvalues in six small subintervais. One of these subin-
tervals contains O and convergence is not indicated on any of the eigenvalues in this

581/44/2-9
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TABLE X
KIRK4900, m = 3n, Convergence of Representative Eigenvalues®

Computed “good” Computed T, error

No. eigenvalue Amingap estimates T, error/
T atm=3n m=4n at m=3n Amingap
l 0.100184031023 9.286 x 10~* 13x1078 1.4x107°

2 0.101112591037 9.286 x 10™* 9.2x 10712 9.9 x 107

3 0.102424974865 1.312x 1073 1.2x 1071 9.2x 107%

4 0.105801742503 5928 x107* 8.8 x 1071 1.5x 1077

5 0.106394577433 5928 x 107* 36x107" 6.1x 107®

6 0.111238683033 4.844 x 107? 2.7x107° 56x10°¢

7 0.117388719646 5.052x 1073 1.6x107® 3.2x107°¢
18 0.138395951209 3.499 x 107* 6.1 x 1071 1.7%10°°
19 0.138745818377 3.499 x 107 22x107° 6.3%x10°°
20 0.139454780546 6.850 X 107* 2.6 x10°° 3.8%x10°°¢
21 0.140139782448 6.850 x 10~* 57x107" 83x 1077
22 0.140923659251 7.839 x 10~* 28x1077° 3.6x 1077
23 0.143861863324 1.458 x 107* 6.1x10°"2 42x107°
24 0.145320292214 1.458 x 10°? 7.4 %1071 51x1077
25 0.147933650495 2613x107° 1.6 x 107" 6.1x107°
47 0.185505354731 1752 x 107° LIx10°™ 6.3 x 107%
48 0.187954892275 5.484 x 10~* 40x 10710 7.3x 1077
49 0.188503244058 5.484 % 107* 1L.ox 1071 1.8x 1077
50 0.190634629045 6.772 x 107* 3.9x 10710 58x 1077
51 0.191311829686 6.772 X 1074 7.4%x107° L1x107°
52 0.192128425044 8.166 x 107* 1.1x107¢ L4x107°
53 0.196343799587 1230 x 107° 93 x 107! 7.6 X 1078
54 0.197573805750 1.230 x 107} 1L.7x10°° 1.4x107°
55 0.199219542593 1.645 x 107° 1.6 x10°° 9.7 x 10~7
56 0.204191078888 9.592 x 107* 29x 107" 3.0x107¢
57 0.205150265749 9.592 x 107* 3.9x 1071 4.1x107°
58 0.207405684118 1.312%x 1073 34x107° 26x107¢
59 0.208717725117 6.860 X 107* 2.6 X 1071 3.8x107°
60 0.209403689072 6.860 x 10" 1.0x 1071 1.5x 1077
88 0.265882212765 1.526 x 107? 3.3x 107" 22x10°°
89 0.267408323794 L1539 x 107* 3.3x107° 29%107°
90 0.268567699576 4.441x107* L1x10~° 2.5%x107°
179 0.399275258168 6.111x 107* 42x107¢ 6.9%x 107°
180 0.401048914269 1774 x 107? 28x107° 1.6 x107¢
219 0.462776965800 1.499 x 107 1.4x10°° 9.3x107°
220 0.464964879878 6.365 x 1074 7.7%x 1073 l2x 10
221 0.465601349313 6.365 x 107* 3.0x 1077 4.7x107*
222 0.466617916442 1.017x 107°? 7.0x 107° 6.9x107°
223 0.469426316630 7.622 % 1077 . 1.7x 1077 1.0 x 107
224 0.469502542959 7.623 X 107 3.1x1077 4.1x 107

? Computed eigenvalues at m = 3n differ from the corresponding computed eigenvalues at m = 4n in
at most the 10th digit.

Table continued
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TABLE X—Continued

Computed “good” Computed T, error

No. eigenvalue Amingap estimates T, error/

T, at m=23n m=4n at m=73n Amingap

225 0.470921967811 1.161 x 10~* 25%x107¢ Lex107°
226 0472082454128 L161 x 1077 1.8 x 1077 Lex 167
227 0.474707818128 1.354 x 10} 1.4x 1071 LOX 1077
228 0.476061429528 1.168 X 10~* 22x%x10°1° 1.9%x 1077
229 0.477229050098 1.168 x 1073 47 x 1074 4.0% 1078
230 0.480408245567 1.479 x 1073 1.6x 1077 11X 107¢
254 0.524094209866 1.698 x 10~° 9.6 X 107! 57x107°
255 0.526307593048 9.026 x 10~* 85 x 107" 9.4 % 107°
256 0.527210204549 9.026 x 16~* 41x10°1 45%107°
257 0.528838346881 1.628 x 10~* 7.2%x 1071 44 x107¢
258 0.531236466738 7.265 x 1074 1.6 x 1071 2251077
259 0.531962998839 7.000 X 16™* 1.4 x 1077 20x 1077
260 0.532662934011 7.000 X 10~* 1.8x 10710 2.6 X 1077
261 0.535055007871 2.054x 107° 9.6 x 10~ 47%107°
308 0.603387037994 6.896 x 1074 9.7 x 1071 t4x 1677
309 0.604076663755 6.896 x 107* 2.7%x 1071 39x 1077
310 0.606181531316 9.045 x 10~* 1.2x107° 13x107°
31l 0.607085976454 9.045 x 10~¢ 9.8 x 107! LIx 1077
312 0.609534164057 1264 x 107? 9.6 x 107! 7.6 x107°
313 0.610797810504 1.264 x 107} 20x 1071 1.6x 1078
314 0.612571021287 1773 x 107} 54 %1071 30x 107"
315 0.615245264333 1.227x 107* Lix107° 9.0 107°
316 0.615367934432 1.227 x 10~* LIx 1078 9.0x 107°
317 0.617207179063 4,180 x 107¢ 7.3x 1071 L7%107°
318 0617625277709 4,181 x 10* 1.3x 1071 ixi077
319 0.620085715833 6.708 X 107* 1.2x 10671 1.8x 1077
320 0.620756557655 6.708 x 107* Lix 107" L6 x 1077
321 0.623247677939 1.391x 10°° 7.2x 1071 52 1078

particular subinterval. However, in the other five subintervals, all of which are
contained in the interval [99, ¥§d.03], many of the eigenvalues have been computed
to six digits or more. These subintervals were identified by considering the error
estimates.

Table IX contains representative eigenvalues from two subintervals of interest: (0.1,
0.9) and (1.1, 1.9), [30], together with the corresponding minimal 4-gaps (computed
at m =3n) and the error estimates computed at m = 2n = 3200 and m = 3n = 48060.
All of these eigenvalues have been computed accurately by m = 3n. The eigenvalues
in the interval (1.1, 1.9) converged slightly more quickly than those in the interval
(0.1, 0.9). This is to be expected because the gap structure in these two subintervals is
very similiar, but the subinterval (1.1, 1.9) is closer to a very large gap in the
spectrum. The storage requirements at m =4800 were approximately 260K bytes.

For KIRK4900, we computed the eigenvalues on these same two subintervals, This
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computation was repeated at m = 3n and at m = 4n. The latter computation was just
to verify for unbelievers that all the eigenvalues had converged. All of the good eigen-
values computed at m = 3n agreed to at least 10 digits with the good eigenvalues
computed at m = 4n. Some of the results of this computation for the subinterval (0.1,
0.9) are given in Table X. The corresponding results for the subinterval (1.1, 1.9) are
given in Table XIV in [33]. The eigenvalues in this latter subinterval converged
slightly more quickly than the eigenvalues in (0.1, 0.9). We again list representative
good eigenvalues, their computed minimal A-gaps, and the corresponding error
estimates obtained using inverse iteration on T, at m = 3n = 14,700. The storage
requirements at m =3n= 14,700 were approximately 750K bytes. These results
demonstrate conclusively that the proposed procedure can be used on very large
mattices.

9. SUMMARY

We have described in detail a Lanczos algorithm for computing distinct eigen-
values of large symmetric matrices; see [19] for the computer programs. There are no
restrictions on 4 other than it is symmetric and that the matrix-vector multiplications
Ax must be performed accurately and rapidly. There are no restrictions on the
distribution of the eigenvalues of 4. However, this distribution determines the amount
of computation required. The storage requirements are linear in the order of 4, if the
storage requirements for generating the products Ax are linear in n. Thus, for such
matrices, our procedure is feasible even for very large n. There is no
reorthogonalization of any vectors. It should be emphasized that we cannot compute
the multiplicities of multiple eigenvalues using this approach. However, an indication
of the true multiplicities may be obtainable from related eigenvector computations if
one is willing to do the additional computation required (|37]). This, however, does
not seem to be practical because of the extra computation.

In the BISEC version of our procedure which simultaneously determines numerical
multiplicities and performs the identification test, the eigenvalue computations
required after T, is generated, reduce to slightly more work than the computation of
the relevant eigenvalues of T,,.

This procedure can be used to compute a few or many eigenvalues. Once the
desired eigenvalues are computed the procedure described in [20] can be used to
compute associated eigenvectors. The eigenvalue procedure can also be used to
determine whether or not there are any eigenvalues in a given sub-interval, and where
there are clusters of eigenvalues.

Another interesting use of this procedure is for computing singular values of
nonsymmetric or rectangular matrices. This application is discussed in Cullum and
Willoughby [38].

In the Introduction we stated that our procedure could be directly applied to
Hermitian matrices. Therefore, before terminating we briefly consider this case. Let
H =R +iC denote a Hermitian matrix, where R denotes the real part of H and C
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denotes the imaginary part. Since H is Hermitian, R =R” and C=—C". That is, R
is symmetric and C is skew-symmetric,

Our eigenvalue procedure can be used directly on A without any modifications by
applying it to the related real symmetric matrix

AE[IE, ;C] (16)

This follows because solving Hz=Az with z=u+iw is equivalent to solving
Ax =Ax with x” = (u", w").

The matrix 4 in Eq. (16) is of order n = 2N, where N is the order of H. We can
show, however, that at least theoretically, the storage and the amount of computation
required to use 4 in Eq. (16) are identical to what is required if we apply the
Hermitian analog of the Lanczos recursions directly to H. Moreover, the tridiagonal
matrices generated using both approaches are the same. Thus the use of 4 in Eq. (16}
in place of H is just as computationally efficient and allows us to work in real
arithmetic. Using A in Eg. (16), is just the resuit of storing the real and imaginary
parts of the Lanczos vectors in separate real arrays.
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